

STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN

Merkhilfe Mathematik/Technik

mit

Formelsammlung

Physik Technologie Chemie

mit
Merkhilfe Mathematik/Technik

München 2013

Erarbeitet im Auftrag des Bayerischen Staatsministeriums für Unterricht und Kultus

Leitung der Arbeitskreise:

Georg Ott Staatsinstitut für Schulqualität und Bildungsforschung

Mitglieder der Arbeitskreise:

Physik

Josef Beck Staatliche Fach- und Berufsoberschule Freising Jens Klee Staatliche Fach- und Berufsoberschule Coburg Thomas Ondak Staatliche Fach- und Berufsoberschule Augsburg Otmar Schuldes Staatliche Fach- und Berufsoberschule Bamberg

Technologie

Bernd Hoffmann Staatliche Fach- und Berufsoberschule Augsburg Günter Lamprecht Staatliche Fach- und Berufsoberschule Bamberg Harald Werchan Staatliche Fach- und Berufsoberschule Freising

Chemie

Tanja Dewath Staatliche Fachoberschule Nürnberg

Dr. Markus Haitzer Staatliche Fach- und Berufsoberschule Traunstein

Herausgeber:

Staatsinstitut für Schulqualität und Bildungsforschung

Anschrift:

Staatsinstitut für Schulqualität und Bildungsforschung Abteilung Berufliche Schulen Schellingstr. 155 80797 München

Tel.: 089 2170-2211 Fax: 089 2170-2215

Internet: www.isb.bayern.de
E-Mail: abt.bes@isb.bayern.de

Verlag:

Kastner AG – das Medienhaus Schlosshof 2-6 85283 Wolnzach Telefon 0049(0)8442/9253-0 Fax 0049(0)8442/2289 www.kastner.de

2., überarbeitete Auflage 2013

ISBN-Nr. 978-3-941951-91-4

Inhaltsverzeichnis

Physik

1	Grundlagen	9
1.1	Dichte	
1.2	Gewichtskraft	
1.3	Normalkraft, Hangabtriebskraft	
1.4	Hooke'sches Gesetz	
1.5	Druck	
1.6	Hydrostatischer Druck	
1.7	Auftriebskraft	
1.8	Reibungskraft	
1.9	Statisches Gleichgewicht	
1.10	Drehmoment	11
1.11	Hebelgesetz	11
2	Geradlinige Bewegungen	12
2.1	Mittlere und momentane Geschwindigkeit	12
2.2	Geradlinige Bewegung mit konstanter Geschwindigkeit	
2.3	Mittlere und momentane Beschleunigung	
2.4	Geradlinige Bewegung mit konstanter Beschleunigung	12
2.5	Der freie Fall	13
3	Newton'sche Gesetze	14
3.1	Trägheitssatz (1. Newton'sches Gesetz)	
3.2	Grundgesetz der Mechanik (2. Newton'sches Gesetz)	
3.3	Wechselwirkungsprinzip (3. Newton'sches Gesetz)	
	Arbeit, Energie und Leistung	
4 4.1	Arbeit	
4.1 4.2	Verschiedene Arten der Arbeit	
4.2	Mechanische Energie	
4.4	Energieerhaltungssatz der Mechanik	
4.5	Mittlere und momentane Leistung	
4.6	Wirkungsgrad einer kontinuierlich arbeitenden Maschine	17
5	Kraftstoß, Impuls, Stoßvorgänge	
5.1	Kraftstoß	
5.2	Impuls	
5.3	Zusammenhang zwischen Kraftstoß und Impuls	
5.4	Gesetz von der Erhaltung des Impulses	
6	Kreisbewegung mit konstanter Winkelgeschwindigkeit	
6.1	Drehwinkel	
6.2	Winkelgeschwindigkeit	
6.3	Frequenz und Umlaufdauer	
6.4	Zusammenhänge zwischen Winkelgeschwindigkeit, Frequenz und Umlaufdauer	
6.5	Ortsvektor	
6.6	Bahngeschwindigkeit	
6.7	Zentripetalbeschleunigung	
6.8	Zentripetalkraft	21

15	Elektromagnetischer Schwingkreis	
15.1 15.2	Differenzialgleichung der ungedämpften elektromagnetischen Schwingung	
	elektromagnetischen Schwingung	. 45
15.3	Thomson-Gleichung für die Periodendauer der ungedämpften	4.5
	elektromagnetischen Schwingung	
16	Elektromagnetische Wellen	
16.1	Fortschreitende elektromagnetische Welle im Vakuum	
16.2	Reflexion und Brechung elektromagnetischer Wellen	
16.3	Beugung und Interferenz elektromagnetischer Wellen	
16.4 16.5	Stehende elektromagnetische Wellen	
	Dipolschwingungen	
17	Optik	
17.1	Geometrische Optik	
17.2	Wellenoptik	. 49
18	Spezielle Relativitätstheorie	
18.1	Lorentzfaktor	
18.2	Zeitdilatation	
18.3	Längenkontraktion	
18.4 18.5	Geschwindigkeitsabhängigkeit der Masse	
18.6	Relativistischer Impuls	
	<u> </u>	
19	Dualismus Welle - Teilchen	
19.1 19.2	Photonen Äußerer lichtelektrischer Effekt	
19.2	Compton-Effekt	
19.4	Materiewellen (De Broglie-Wellen)	
20	Atomphysik	
20.1	Atomhülle	
20.2	Radioaktivität	
21 21.1	Fehlerrechnung	
21.1	Mehrmalige direkte Messung unter gleichen Bedingungen	
21.3	Maximale Unsicherheit eines Funktionswerts	

Inhaltsverzeichnis

Technologie

1 1.1 1.2 1.3 1.4 1.5	Festigkeitslehre Normalspannung Schubspannung Formänderung im elastischen Bereich Beanspruchungsarten Zulässige Spannungen	61 61 61 62
2 2.1 2.2 2.3 2.4 3 3.1 3.2 3.3	Werkstoffprüfung für Metalle Zugversuch Härteprüfung Zusammenhang zwischen Zugfestigkeit und Härte nach Brinell Zusammenhang zwischen Zugfestigkeit und Scherfestigkeit Thermodynamik Grundlagen Hauptsätze der Thermodynamik Wärme, innere Energie und Arbeit	63 64 64 65 65 67
4 4.1 4.2 4.3 4.4	Digitaltechnik Gesetze der Schaltalgebra Stellenwertsysteme Grundfunktionen logischer Schaltungen Verknüpfte logische Schaltungen	71 71 72
Che	mie	
1.1 1.2 1.3 1.4 1.5 1.6	Quantitative Aspekte	73 73 73 73 73 73
2	Mittlere Reaktionsgeschwindigkeit	
3 3.1 3.2 3.3	Massenwirkungsgesetz	74 74
4.1 4.2 4.3 4.4 4.5 4.6	Säure-Base-Gleichgewichte lonenprodukt des Wassers Säurekonstante und Säureexponent Basekonstante und Baseexponent pH-Wert pOH-Wert Näherungsformeln zur Berechnung des pH-Werts	75 75 75 76 76 76
5 5.1 5.2	Redox-Gleichgewichte	77

Tabellen

Tabellen zur Physik

1	Ausgewanite Konstanten	۸ / 8
2	Ruhemassen und Ruheenergien ausgewählter Teilchen	. 79
3	Basisgrößen und Basiseinheiten des Internationalen Einheitensystems	. 80
4	Weitere wichtige physikalische Größen und ihre Einheiten	. 81
5 5.1 5.2 5.3 5.4 5.5	Umrechnung von Einheiten ausgewählter Größen Länge Masse Geschwindigkeit Druck Energie	. 86 . 86 . 86
6 6.1 6.2	SI-Vorsätze und griechisches Alphabet	. 88 . 88
7 7.1 7.2 7.3 7.4 7.5 7.6	Dichte	. 89 . 89 . 90 . 90 . 91
8 8.1 8.2	Viskosität	. 92
9	Längenausdehnungskoeffizienten fester Stoffe	. 93
10 10.1 10.2	Volumenausdehnungskoeffizienten	. 94
11 11.1 11.2	Schallgeschwindigkeiten	. 95
12.1 12.2 12.3 12.4	Reibungszahlen und Widerstandsbeiwerte in Luft Rollreibungszahlen Haftreibungszahlen und Gleitreibungszahlen Fahrwiderstandszahlen Widerstandsbeiwerte in Luft	. 96 . 96 . 96
13 13.1 13.2	Bremsverzögerungen	. 98
14 14.1 14.2 14.3	Daten der Himmelskörper im Sonnensystem. Daten der Planeten Daten der Sonne. Daten des Erdmondes	. 99 100

Inhaltsverzeichnis

15	Permittivitätszahlen (Dielektrizitätszahlen)	101
16	Permeabilitätszahlen	101
17	Brechzahlen ausgewählter Stoffe	102
18	Elektromagnetisches Spektrum	102
19	Wellenlänge einiger Spektrallinien im sichtbaren Bereich in Luft	103
20	Austrittsarbeit für einige Metalle beim äußeren lichtelektrischen Effekt	103
21	Atommassen, Halbwertszeiten und wahrscheinlichste Zerfallsart ausgewählter Nuklide	104
22	Natürliche Zerfallsreihen	110
23	Ausgewählte Schaltzeichen	112
Tab	ellen zur Technologie	
1	Gaskonstanten	113
2 2.1 2.2	Heizwerte Heizwerte fester und flüssiger Brennstoffe Heizwerte gasförmiger Brennstoffe	113
3	Spezifischer elektrischer Widerstand	
4	Wärmeleitfähigkeit	
5	Spezifische Wärmekapazität von Flüssigkeiten und Feststoffen	
6	Schmelztemperatur und Siedetemperatur fester Stoffe	
7	Spezifische Schmelzwärme und Verdampfungswärme	
8	Flächenmomente 2. Ordnung und Widerstandsmomente	119
9 9.1 9.2 9.3 9.4	Festigkeitswerte von Werkstoffen Stähle Gusseisenwerkstoffe Nichteisenmetalle Nichtmetalle	120 121 122
10	Eisen-Kohlenstoff-Diagramm	124
Tab	ellen zur Chemie	
1	Säurekonstanten und Basekonstanten	125
2	Elektrochemische Spannungsreihe der Metalle	126
3	Elektrochemische Spannungsreihe der Nichtmetalle	127
4	Elektrochemische Spannungsreihe weiterer Halbreaktionen	127
Stichwortverzeichnis		
Anhang: Merkhilfe Mathematik/Technik		

1 Grundlagen

1.1 Dichte ρ

m ist die Masse eines Körpers / einer Flüssigkeit / eines Gases,

V das zugehörige Volumen,

 ρ die Dichte des Körpers / der Flüssigkeit / des Gases.

$$\rho = \frac{m}{V}$$

1.2 Gewichtskraft \vec{F}_G

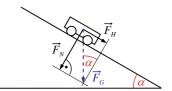
m ist die Masse eines Körpers,

g der Ortsfaktor (Betrag der Fallbeschleunigung),

 F_{G} der Betrag der auf den Körper wirkenden Gewichtskraft \vec{F}_{G} .

 $F_G = m \cdot g$

1.3 Normalkraft \overrightarrow{F}_N , Hangabtriebskraft \overrightarrow{F}_H


 \vec{F}_G ist die Gewichtskraft,

 \vec{F}_H die Hangabtriebskraft,

 \vec{F}_N die Normalkraft.

 \vec{F}_H und \vec{F}_N sind Komponenten von \vec{F}_G .

Mit der Normalkraft \vec{F}_N wird ein Körper senkrecht auf eine Unterlage gedrückt.

1.4 Hooke'sches Gesetz

F ist der Betrag einer Kraft \vec{F} , mit der eine Feder gedehnt / gestaucht wird,

 $F = D \cdot s$

D die Federkonstante (Federhärte),

s die Länge der Dehnung / Stauchung der Feder.

1.5 Druck p

 F_N ist der Betrag einer Kraft \vec{F}_N , die senkrecht auf eine Fläche drückt (Normalkraft),

 $p = \frac{F_N}{A}$

A der Inhalt der Fläche,

p der Druck.

1.6 Hydrostatischer Druck p_h

h ist die Höhe einer Flüssigkeitssäule,

 $p_h = \rho \cdot g \cdot h$

 $F_A = \rho \cdot g \cdot V$

- ρ die Dichte der Flüssigkeit,
- g der Ortsfaktor (Betrag der Fallbeschleunigung),
- p_h der hydrostatische Druck.

1.7 Auftriebskraft \vec{F}_{A}

- $\rho \quad \text{ist die Dichte eines Mediums (Flüssigkeit oder Gas), in} \\ \quad \text{das ein K\"{o}rper ganz oder teilweise eingetaucht ist,}$
 - getaucht ist,
- V das Volumen des verdrängten Mediums,
- g der Ortsfaktor (Betrag der Fallbeschleunigung),
- F_A der Betrag der Auftriebskraft \vec{F}_A .

1.8 Reibungskraft \vec{F}_R

1.8.1 Reibungskraft zwischen zwei Festkörpern

- F_N ist der Betrag der Normalkraft \vec{F}_N , mit der ein Körper auf eine Unterlage gedrückt wird,
- $F_R = \mu \cdot F_N$

 $F_R = 6\pi \cdot \eta \cdot r \cdot v$

- μ die Reibungszahl,
- F_R der Betrag der Reibungskraft \vec{F}_R .

1.8.2 Reibungskraft bei laminarer Strömung (Gesetz von Stokes)

- r ist der Radius einer Kugel,
- v der Betrag der Geschwindigkeit \vec{v} , mit der sich die Kugel in einem Medium (Flüssigkeit oder Gas) bewegt,
- η die Viskosität (Zähigkeit) des Mediums,
- F_R der Betrag der Reibungskraft \vec{F}_R .

1.8.3 Reibungskraft bei turbulenter Strömung (Gesetz von Newton)

- v ist der Betrag der Geschwindigkeit \vec{v} eines Körpers,
- A der Querschnitt des Körpers, der senkrecht zu \vec{v} steht,
- $c_{\scriptscriptstyle W}$ der Widerstandsbeiwert,
- ρ die Dichte des Mediums,
- F_R der Betrag der Reibungskraft \vec{F}_R .

$F_R = \frac{1}{2} c_W \cdot A \cdot \rho \cdot v^2$

1.9 Statisches Gleichgewicht

Ist die Resultierende aller auf einen punktförmigen Körper wirkenden Kräfte $\vec{F}_1, ..., \vec{F}_n$ gleich dem Nullvektor, so befindet sich der Körper im statischen Gleichgewicht.

$$\sum_{i=1}^{n} \vec{F}_{i} = \vec{F}_{1} + \vec{F}_{2} + \dots + \vec{F}_{n} = \vec{0}$$

1.10 Drehmoment \vec{M}

Der von der Drehachse zum Angriffspunkt der Kraft \vec{F} gezogene Lotvektor \vec{r} hat die Länge r.

Den Abstand ℓ der Wirkungslinie der Kraft \vec{F} von der Drehachse bezeichnet man als Kraftarm oder Hebelarm.

Es gilt: $\ell = r \cdot \sin \varphi$ (siehe Skizze)

Das Drehmoment \vec{M} ist definiert als das Vektorprodukt aus \vec{r} und \vec{F} .

 $\vec{M} = \vec{r} \times \vec{F}$

Ein Drehmoment \vec{M} ist *linksdrehend*, wenn es *entgegen dem Uhrzeigersinn* dreht (siehe Skizze).

ℓ ist der Kraftarm (Hebelarm),

 $M = F \cdot \ell$

F der Betrag der Kraft \vec{F} ,

M der Betrag des Drehmomentes \vec{M} .

1.11 Hebelgesetz

Ein Hebel befindet sich im Gleichgewicht, wenn die Summe der linksdrehenden Momente gegengleich der Summe der rechtsdrehenden Momente ist.

2 Geradlinige Bewegungen

Ein punktförmiger Körper (Massenpunkt) bewegt sich längs der x-Achse eines Koordinatensystems. Deshalb werden im Folgenden die in den Formeln auftretenden Geschwindigkeiten \vec{v}_0 , \vec{v}_m und $\vec{v}(t)$ sowie die Beschleunigungen \vec{a}_m und $\vec{a}(t)$ kurz mit ihren x-Koordinaten v_0 , v_m und v(t) sowie a_m und a(t) bezeichnet.

2.1 Mittlere und momentane Geschwindigkeit

Betrachtet wird die Bewegung des Körpers in einem Zeitintervall $[t; t + \Delta t]$.

 Δt ist die Länge des Zeitintervalls,

 Δx die Änderung der Ortskoordinate x in diesem Zeitintervall,

v_m die *mittlere Geschwindigkeit* für dieses Zeitintervall.

 $v_m = \frac{\Delta x}{\Delta t}$

v(t) ist die momentane Geschwindigkeit zum Zeitpunkt t.

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}(t) = \frac{dx}{dt}(t) = \dot{x}(t)$$

2.2 Geradlinige Bewegung mit konstanter Geschwindigkeit

ist die Ortskoordinate des Körpers zum Zeitpunkt $t_0 = 0$,

x(t) die Ortskoordinate zu einem Zeitpunkt t,

v die konstante Geschwindigkeit.

$$v = \frac{\Delta x}{\Delta t} = \frac{x(t) - x_0}{t - t_0}$$
$$x(t) = x_0 + v \cdot t$$

2.3 Mittlere und momentane Beschleunigung

Betrachtet wird die Bewegung des Körpers in einem Zeitintervall $[t; t + \Delta t]$.

 Δt ist die Länge des Zeitintervalls,

 Δv die Änderung der Geschwindigkeit in diesem Zeitintervall,

 $a_{\scriptscriptstyle m}$ die mittlere Beschleunigung für dieses Zeitintervall.

$$a_m = \frac{\Delta v}{\Delta t}$$

a(t) ist die momentane Beschleunigung zum Zeitpunkt t.

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}(t) = \frac{dv}{dt}(t) = \dot{v}(t) = \ddot{x}(t)$$

2.4 Geradlinige Bewegung mit konstanter Beschleunigung

 x_0 ist die Ortskoordinate des Körpers zum Zeitpunkt $t_0 = 0$,

x(t) die Ortskoordinate zu einem Zeitpunkt t,

 v_0 die Geschwindigkeit des Körpers zum Zeitpunkt t_0 ,

v(t) seine Geschwindigkeit zu einem Zeitpunkt t,

a die konstante Beschleunigung, die der Körper erfährt.

$$a = \frac{\Delta v}{\Delta t} = \frac{v(t) - v_0}{t - t_0}$$

$$v(t) = v_0 + a \cdot t$$

$$x(t) = x_0 + v_0 \cdot t + \frac{1}{2}a \cdot t^2$$

$$v^2 - v_0^2 = 2 \cdot a \cdot (x - x_0)$$

BERUFLICHE OBERSCHULEN

Physik, Technologie, Chemie

Staatsinstitut für Schulqualität und Bildungsforschung Schellingstraße 155, 80797 München Tel.: 089 2170-2101 Fax: 089 2170-2105

Internet: www.isb.bayern.de ISBN-Nr. 978-3-941951-91-4